Serveur d'exploration sur les mitochondries dans l'oxydoréduction chez les plantes

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Thioredoxin o-mediated reduction of mitochondrial alternative oxidase in the thermogenic skunk cabbage Symplocarpus renifolius.

Identifieur interne : 000066 ( Main/Exploration ); précédent : 000065; suivant : 000067

Thioredoxin o-mediated reduction of mitochondrial alternative oxidase in the thermogenic skunk cabbage Symplocarpus renifolius.

Auteurs : Yui Umekawa [Japon] ; Kikukatsu Ito [Japon]

Source :

RBID : pubmed:30289493

Descripteurs français

English descriptors

Abstract

Thermogenesis in plants involves significant increases in their cyanide-resistant mitochondrial alternative oxidase (AOX) capacity. Because AOX is a non-proton-motive ubiquinol oxidase, the dramatic drop in free energy between ubiquinol and oxygen is dissipated as heat. In the thermogenic skunk cabbage (Symplocarpus renifolius), SrAOX is specifically expressed in the florets. Although SrAOX harbours conserved cysteine residues, the details of the mechanisms underlying its redox regulation are poorly understood. In our present study, the two mitochondrial thioredoxin o cDNAs SrTrxo1 and SrTrxo2, were isolated from the thermogenic florets of S. renifolius. The deduced amino acid sequences of the protein products revealed that SrTrxo2 specifically lacks the region corresponding to the α3-helix in SrTrxo1. Expression analysis of thermogenic and non-thermogenic S. renifolius tissues indicated that the SrTrxo1 and SrAOX transcripts are predominantly expressed together in thermogenic florets, whereas SrTrxo2 transcripts are almost undetectable in any tissue. Finally, functional in vitro analysis of recombinant SrTrxo1 and mitochondrial membrane fractions of thermogenic florets indicated its reducing activity on SrAOX proteins. Taken together, these results indicate that SrTrxo1 is likely to play a role in the redox regulation of SrAOX in S. renifolius thermogenic florets.

DOI: 10.1093/jb/mvy082
PubMed: 30289493
PubMed Central: PMC6299270


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Thioredoxin o-mediated reduction of mitochondrial alternative oxidase in the thermogenic skunk cabbage Symplocarpus renifolius.</title>
<author>
<name sortKey="Umekawa, Yui" sort="Umekawa, Yui" uniqKey="Umekawa Y" first="Yui" last="Umekawa">Yui Umekawa</name>
<affiliation wicri:level="1">
<nlm:affiliation>Cryobiofrontier Research Center, Faculty of Agriculture, Iwate University, 3-18-8 Ueda, Morioka, Iwate, Japan.</nlm:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>Cryobiofrontier Research Center, Faculty of Agriculture, Iwate University, 3-18-8 Ueda, Morioka, Iwate</wicri:regionArea>
<wicri:noRegion>Iwate</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Ito, Kikukatsu" sort="Ito, Kikukatsu" uniqKey="Ito K" first="Kikukatsu" last="Ito">Kikukatsu Ito</name>
<affiliation wicri:level="1">
<nlm:affiliation>Cryobiofrontier Research Center, Faculty of Agriculture, Iwate University, 3-18-8 Ueda, Morioka, Iwate, Japan.</nlm:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>Cryobiofrontier Research Center, Faculty of Agriculture, Iwate University, 3-18-8 Ueda, Morioka, Iwate</wicri:regionArea>
<wicri:noRegion>Iwate</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biological Chemistry and Food Science, Faculty of Agriculture, Iwate University, 3-18-8 Ueda, Morioka, Iwate, Japan.</nlm:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>Department of Biological Chemistry and Food Science, Faculty of Agriculture, Iwate University, 3-18-8 Ueda, Morioka, Iwate</wicri:regionArea>
<wicri:noRegion>Iwate</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Agri-Innovation Research Center, Iwate University, 3-18-8 Ueda, Morioka, Iwate, Japan.</nlm:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>Agri-Innovation Research Center, Iwate University, 3-18-8 Ueda, Morioka, Iwate</wicri:regionArea>
<wicri:noRegion>Iwate</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2019">2019</date>
<idno type="RBID">pubmed:30289493</idno>
<idno type="pmid">30289493</idno>
<idno type="doi">10.1093/jb/mvy082</idno>
<idno type="pmc">PMC6299270</idno>
<idno type="wicri:Area/Main/Corpus">000175</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000175</idno>
<idno type="wicri:Area/Main/Curation">000175</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000175</idno>
<idno type="wicri:Area/Main/Exploration">000175</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Thioredoxin o-mediated reduction of mitochondrial alternative oxidase in the thermogenic skunk cabbage Symplocarpus renifolius.</title>
<author>
<name sortKey="Umekawa, Yui" sort="Umekawa, Yui" uniqKey="Umekawa Y" first="Yui" last="Umekawa">Yui Umekawa</name>
<affiliation wicri:level="1">
<nlm:affiliation>Cryobiofrontier Research Center, Faculty of Agriculture, Iwate University, 3-18-8 Ueda, Morioka, Iwate, Japan.</nlm:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>Cryobiofrontier Research Center, Faculty of Agriculture, Iwate University, 3-18-8 Ueda, Morioka, Iwate</wicri:regionArea>
<wicri:noRegion>Iwate</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Ito, Kikukatsu" sort="Ito, Kikukatsu" uniqKey="Ito K" first="Kikukatsu" last="Ito">Kikukatsu Ito</name>
<affiliation wicri:level="1">
<nlm:affiliation>Cryobiofrontier Research Center, Faculty of Agriculture, Iwate University, 3-18-8 Ueda, Morioka, Iwate, Japan.</nlm:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>Cryobiofrontier Research Center, Faculty of Agriculture, Iwate University, 3-18-8 Ueda, Morioka, Iwate</wicri:regionArea>
<wicri:noRegion>Iwate</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biological Chemistry and Food Science, Faculty of Agriculture, Iwate University, 3-18-8 Ueda, Morioka, Iwate, Japan.</nlm:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>Department of Biological Chemistry and Food Science, Faculty of Agriculture, Iwate University, 3-18-8 Ueda, Morioka, Iwate</wicri:regionArea>
<wicri:noRegion>Iwate</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Agri-Innovation Research Center, Iwate University, 3-18-8 Ueda, Morioka, Iwate, Japan.</nlm:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>Agri-Innovation Research Center, Iwate University, 3-18-8 Ueda, Morioka, Iwate</wicri:regionArea>
<wicri:noRegion>Iwate</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Journal of biochemistry</title>
<idno type="eISSN">1756-2651</idno>
<imprint>
<date when="2019" type="published">2019</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Amino Acid Sequence (MeSH)</term>
<term>Araceae (enzymology)</term>
<term>Araceae (genetics)</term>
<term>Araceae (physiology)</term>
<term>DNA, Complementary (genetics)</term>
<term>DNA, Complementary (isolation & purification)</term>
<term>DNA, Plant (genetics)</term>
<term>DNA, Plant (isolation & purification)</term>
<term>Flowers (MeSH)</term>
<term>Gene Expression Regulation, Enzymologic (MeSH)</term>
<term>Gene Expression Regulation, Plant (MeSH)</term>
<term>Mitochondria (enzymology)</term>
<term>Mitochondrial Proteins (chemistry)</term>
<term>Mitochondrial Proteins (metabolism)</term>
<term>Oxidation-Reduction (MeSH)</term>
<term>Oxidoreductases (chemistry)</term>
<term>Oxidoreductases (metabolism)</term>
<term>Plant Proteins (chemistry)</term>
<term>Plant Proteins (metabolism)</term>
<term>RNA, Messenger (genetics)</term>
<term>Sequence Homology, Amino Acid (MeSH)</term>
<term>Thermogenesis (MeSH)</term>
<term>Thioredoxins (genetics)</term>
<term>Thioredoxins (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>ADN complémentaire (génétique)</term>
<term>ADN complémentaire (isolement et purification)</term>
<term>ADN des plantes (génétique)</term>
<term>ADN des plantes (isolement et purification)</term>
<term>ARN messager (génétique)</term>
<term>Araceae (enzymologie)</term>
<term>Araceae (génétique)</term>
<term>Araceae (physiologie)</term>
<term>Fleurs (MeSH)</term>
<term>Mitochondries (enzymologie)</term>
<term>Oxidoreductases (composition chimique)</term>
<term>Oxidoreductases (métabolisme)</term>
<term>Oxydoréduction (MeSH)</term>
<term>Protéines mitochondriales (composition chimique)</term>
<term>Protéines mitochondriales (métabolisme)</term>
<term>Protéines végétales (composition chimique)</term>
<term>Protéines végétales (métabolisme)</term>
<term>Régulation de l'expression des gènes codant pour des enzymes (MeSH)</term>
<term>Régulation de l'expression des gènes végétaux (MeSH)</term>
<term>Similitude de séquences d'acides aminés (MeSH)</term>
<term>Séquence d'acides aminés (MeSH)</term>
<term>Thermogenèse (MeSH)</term>
<term>Thiorédoxines (génétique)</term>
<term>Thiorédoxines (métabolisme)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Mitochondrial Proteins</term>
<term>Oxidoreductases</term>
<term>Plant Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>DNA, Complementary</term>
<term>DNA, Plant</term>
<term>RNA, Messenger</term>
<term>Thioredoxins</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Oxidoreductases</term>
<term>Protéines mitochondriales</term>
<term>Protéines végétales</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymologie" xml:lang="fr">
<term>Araceae</term>
<term>Mitochondries</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>Araceae</term>
<term>Mitochondria</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Araceae</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>ADN complémentaire</term>
<term>ADN des plantes</term>
<term>ARN messager</term>
<term>Araceae</term>
<term>Thiorédoxines</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="isolation & purification" xml:lang="en">
<term>DNA, Complementary</term>
<term>DNA, Plant</term>
</keywords>
<keywords scheme="MESH" qualifier="isolement et purification" xml:lang="fr">
<term>ADN complémentaire</term>
<term>ADN des plantes</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Mitochondrial Proteins</term>
<term>Oxidoreductases</term>
<term>Plant Proteins</term>
<term>Thioredoxins</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Oxidoreductases</term>
<term>Protéines mitochondriales</term>
<term>Protéines végétales</term>
<term>Thiorédoxines</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Araceae</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Araceae</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Amino Acid Sequence</term>
<term>Flowers</term>
<term>Gene Expression Regulation, Enzymologic</term>
<term>Gene Expression Regulation, Plant</term>
<term>Oxidation-Reduction</term>
<term>Sequence Homology, Amino Acid</term>
<term>Thermogenesis</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Fleurs</term>
<term>Oxydoréduction</term>
<term>Régulation de l'expression des gènes codant pour des enzymes</term>
<term>Régulation de l'expression des gènes végétaux</term>
<term>Similitude de séquences d'acides aminés</term>
<term>Séquence d'acides aminés</term>
<term>Thermogenèse</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Thermogenesis in plants involves significant increases in their cyanide-resistant mitochondrial alternative oxidase (AOX) capacity. Because AOX is a non-proton-motive ubiquinol oxidase, the dramatic drop in free energy between ubiquinol and oxygen is dissipated as heat. In the thermogenic skunk cabbage (Symplocarpus renifolius), SrAOX is specifically expressed in the florets. Although SrAOX harbours conserved cysteine residues, the details of the mechanisms underlying its redox regulation are poorly understood. In our present study, the two mitochondrial thioredoxin o cDNAs SrTrxo1 and SrTrxo2, were isolated from the thermogenic florets of S. renifolius. The deduced amino acid sequences of the protein products revealed that SrTrxo2 specifically lacks the region corresponding to the α3-helix in SrTrxo1. Expression analysis of thermogenic and non-thermogenic S. renifolius tissues indicated that the SrTrxo1 and SrAOX transcripts are predominantly expressed together in thermogenic florets, whereas SrTrxo2 transcripts are almost undetectable in any tissue. Finally, functional in vitro analysis of recombinant SrTrxo1 and mitochondrial membrane fractions of thermogenic florets indicated its reducing activity on SrAOX proteins. Taken together, these results indicate that SrTrxo1 is likely to play a role in the redox regulation of SrAOX in S. renifolius thermogenic florets.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">30289493</PMID>
<DateCompleted>
<Year>2019</Year>
<Month>01</Month>
<Day>24</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>02</Month>
<Day>25</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Electronic">1756-2651</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>165</Volume>
<Issue>1</Issue>
<PubDate>
<Year>2019</Year>
<Month>Jan</Month>
<Day>01</Day>
</PubDate>
</JournalIssue>
<Title>Journal of biochemistry</Title>
<ISOAbbreviation>J Biochem</ISOAbbreviation>
</Journal>
<ArticleTitle>Thioredoxin o-mediated reduction of mitochondrial alternative oxidase in the thermogenic skunk cabbage Symplocarpus renifolius.</ArticleTitle>
<Pagination>
<MedlinePgn>57-65</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1093/jb/mvy082</ELocationID>
<Abstract>
<AbstractText>Thermogenesis in plants involves significant increases in their cyanide-resistant mitochondrial alternative oxidase (AOX) capacity. Because AOX is a non-proton-motive ubiquinol oxidase, the dramatic drop in free energy between ubiquinol and oxygen is dissipated as heat. In the thermogenic skunk cabbage (Symplocarpus renifolius), SrAOX is specifically expressed in the florets. Although SrAOX harbours conserved cysteine residues, the details of the mechanisms underlying its redox regulation are poorly understood. In our present study, the two mitochondrial thioredoxin o cDNAs SrTrxo1 and SrTrxo2, were isolated from the thermogenic florets of S. renifolius. The deduced amino acid sequences of the protein products revealed that SrTrxo2 specifically lacks the region corresponding to the α3-helix in SrTrxo1. Expression analysis of thermogenic and non-thermogenic S. renifolius tissues indicated that the SrTrxo1 and SrAOX transcripts are predominantly expressed together in thermogenic florets, whereas SrTrxo2 transcripts are almost undetectable in any tissue. Finally, functional in vitro analysis of recombinant SrTrxo1 and mitochondrial membrane fractions of thermogenic florets indicated its reducing activity on SrAOX proteins. Taken together, these results indicate that SrTrxo1 is likely to play a role in the redox regulation of SrAOX in S. renifolius thermogenic florets.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Umekawa</LastName>
<ForeName>Yui</ForeName>
<Initials>Y</Initials>
<AffiliationInfo>
<Affiliation>Cryobiofrontier Research Center, Faculty of Agriculture, Iwate University, 3-18-8 Ueda, Morioka, Iwate, Japan.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Ito</LastName>
<ForeName>Kikukatsu</ForeName>
<Initials>K</Initials>
<AffiliationInfo>
<Affiliation>Cryobiofrontier Research Center, Faculty of Agriculture, Iwate University, 3-18-8 Ueda, Morioka, Iwate, Japan.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Department of Biological Chemistry and Food Science, Faculty of Agriculture, Iwate University, 3-18-8 Ueda, Morioka, Iwate, Japan.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Agri-Innovation Research Center, Iwate University, 3-18-8 Ueda, Morioka, Iwate, Japan.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>J Biochem</MedlineTA>
<NlmUniqueID>0376600</NlmUniqueID>
<ISSNLinking>0021-924X</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D018076">DNA, Complementary</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D018744">DNA, Plant</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D024101">Mitochondrial Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010940">Plant Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012333">RNA, Messenger</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>52500-60-4</RegistryNumber>
<NameOfSubstance UI="D013879">Thioredoxins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.-</RegistryNumber>
<NameOfSubstance UI="D010088">Oxidoreductases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.-</RegistryNumber>
<NameOfSubstance UI="C088813">alternative oxidase</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000595" MajorTopicYN="N">Amino Acid Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D029064" MajorTopicYN="N">Araceae</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="Y">enzymology</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018076" MajorTopicYN="N">DNA, Complementary</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000302" MajorTopicYN="N">isolation & purification</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018744" MajorTopicYN="N">DNA, Plant</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000302" MajorTopicYN="N">isolation & purification</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D035264" MajorTopicYN="N">Flowers</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015971" MajorTopicYN="N">Gene Expression Regulation, Enzymologic</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018506" MajorTopicYN="N">Gene Expression Regulation, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008928" MajorTopicYN="N">Mitochondria</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="Y">enzymology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D024101" MajorTopicYN="N">Mitochondrial Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010084" MajorTopicYN="N">Oxidation-Reduction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010088" MajorTopicYN="N">Oxidoreductases</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010940" MajorTopicYN="N">Plant Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012333" MajorTopicYN="N">RNA, Messenger</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017386" MajorTopicYN="N">Sequence Homology, Amino Acid</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D022722" MajorTopicYN="Y">Thermogenesis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013879" MajorTopicYN="N">Thioredoxins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2018</Year>
<Month>09</Month>
<Day>03</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2018</Year>
<Month>10</Month>
<Day>04</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2018</Year>
<Month>10</Month>
<Day>6</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2019</Year>
<Month>1</Month>
<Day>25</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2018</Year>
<Month>10</Month>
<Day>6</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">30289493</ArticleId>
<ArticleId IdType="pii">5115938</ArticleId>
<ArticleId IdType="doi">10.1093/jb/mvy082</ArticleId>
<ArticleId IdType="pmc">PMC6299270</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Biochem Biophys Res Commun. 1999 Nov;265(1):106-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10548498</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Physiol Plant Mol Biol. 2001 Jun;52:561-591</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11337409</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Biochem Biophys. 2001 May 1;389(1):144-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11370665</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2001 Nov 20;98(24):14144-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11717467</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1995 Oct;109(2):353-361</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12228600</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1993 Nov;103(3):845-854</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12231983</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Protein Sci. 1992 May;1(5):609-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1304360</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Physiol Plant Mol Biol. 2000 Jun;51:371-400</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15012197</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2004 Oct 5;101(40):14545-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15385674</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2004 Oct;45(10):1413-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15564525</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2007 Mar;12(3):125-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17293156</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2007 May 4;368(3):800-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17368484</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2007 Dec 22;581(30):5852-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18060878</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2008 Feb;146(2):636-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18162588</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2009 Jun;150(2):646-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19363090</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biol Lett. 2009 Aug 23;5(4):568-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19364718</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2010 Feb 23;107(8):3900-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20133584</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2010 Oct;13(8):1205-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20136512</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2010 May;231(6):1291-300</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20221632</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1991 May 25;266(15):9494-500</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2033048</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2010 Sep;33(9):1474-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20545882</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2011 Dec;157(4):1721-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21988877</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 2012 Jul 15;445(2):237-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22512685</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2013 Jun;54(6):875-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23444301</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2013;64:637-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23638828</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2013 May 10;14(5):R41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23663246</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2013 Dec;30(12):2725-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24132122</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2015 Feb;38(2):299-314</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24428628</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Bot. 2015 Sep;116(4):571-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26041732</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2016 Apr 20;6:24830</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27095582</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Signal Behav. 2016 Nov;11(11):e1247138</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27739913</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2017 Mar;22(3):249-262</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28139457</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1993 Jan 19;32(2):426-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8422352</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 1996 Sep 16;173(2):265-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8964512</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Protein Eng. 1997 Dec;10(12):1425-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9543004</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1998 Sep;10(9):1551-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9724700</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Japon</li>
</country>
</list>
<tree>
<country name="Japon">
<noRegion>
<name sortKey="Umekawa, Yui" sort="Umekawa, Yui" uniqKey="Umekawa Y" first="Yui" last="Umekawa">Yui Umekawa</name>
</noRegion>
<name sortKey="Ito, Kikukatsu" sort="Ito, Kikukatsu" uniqKey="Ito K" first="Kikukatsu" last="Ito">Kikukatsu Ito</name>
<name sortKey="Ito, Kikukatsu" sort="Ito, Kikukatsu" uniqKey="Ito K" first="Kikukatsu" last="Ito">Kikukatsu Ito</name>
<name sortKey="Ito, Kikukatsu" sort="Ito, Kikukatsu" uniqKey="Ito K" first="Kikukatsu" last="Ito">Kikukatsu Ito</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/MitoPlantRedoxV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000066 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000066 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    MitoPlantRedoxV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:30289493
   |texte=   Thioredoxin o-mediated reduction of mitochondrial alternative oxidase in the thermogenic skunk cabbage Symplocarpus renifolius.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:30289493" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a MitoPlantRedoxV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Sat Nov 21 12:18:52 2020. Site generation: Sat Nov 21 12:19:22 2020